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Abstract  

A computationally-convenient approach to identifying 
reflections which satisfy the formal conditions for 
enantiomorph definition is described. 

1. Introduct ion 

All application procedures in direct methods, when 
applied to noncentrosymmetric structures, require that 
one or more reflections are selected, in addition to those 
defining the cell origin, to specify the enantiomorph of 
the structure. The formal conditions that are required 
to specify the origin and the enantiomorph have been 
described in terms of the seminvariant vectors V and 
seminvariant moduli m by Hauptman & Karle (1956). 
The values of V and m are listed in § 6.1 of 
International Tables for X-ray Crystallography (19 74). 

General procedures for applying V and m in the 
selection of origin-defining reflections are well under- 
stood and widely applied in direct-methods computer 
software. In contrast, procedures for identifying 
enantiomorph-defining reflections (EDR) tend to be 
much less straightforward. As a result a significant 
number of errors and misconceptions about the general 
requirements for enantiomorphic definition continue to 
appear in publications, and even texts. This paper 
outlines a relatively simple and space-group-independ- 
ent approach to enantiomorph definition suitable for 
both manual and computer-based application. 

2. E n a n t i o m o r p h  definition 

The origin of a cell is fixed by specifying the 
structure-factor phases of p linearly independent 
reflections (Hauptman & Karle, 1954, 1956). The value 
of p ranges from 0 to 3, and is determined by the 
space-group symmetry (Karle & Hauptman, 1956). 

Any reciprocal-lattice vector h can be expressed as a 
combination of the origin defining vector set H = (h~, 
... hp) in the form 

p 
h= ~ njhj (1) 

J 

h = n i l ,  (2) 
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where n is the vector set nj (j  = 1 to p). If all of n I are 
integers then h is linearly dependent on H; otherwise h 
is rationally dependent on H. The values of nj ( j  = 1 to 
p) are determined from 

n = h n  -1. (3) 

A detailed discussion on the linear and rational 
dependence of h on H is given by Rodgers (1980). 

For the purposes of origin definition, a reflection 
vector h is transformed into the seminvariant vectors h' 
and u by the operations 

h'= Vh (4) 

and 
n --- h'(mod m). (5) 

V is the seminvariant vector matrix and m are the 
seminvariant moduli (Hauptman & Karle, 1956). A 
necessary requirement of any set of origin-defining 
reflections is that the matrix of their seminvariant 
indices 

has the magnitude 

U = (u 1, . . . ,  up) (6) 

rut = +__ 1. (7) 

Because of (7) any reflection h, expressed as the 
seminvariant vector u, is linearly related to U by a set 
of integers n' (n~ . . . .  , n~,) such that 

n' = uU -~. (8) 

If • is the set of origin defining phases (¢~ . . . . .  Cp) for 
the reflections (hi . . . .  , hp) then the linear relationship of 
u to U gives rise to a seminvariant phase tp~, where 

tp~,= n' O. (9) 

For noncentrosymmetric structures the value of ~0~, 
provides an important means of identifying additional 
phases which are sensitive to the enantiomorphous 
structure. If the phase of an additional vector h is equal 
to the value of ~0~, (modulus 70 then tph is independent of 
the enantiomorph. On the other hand, if ~0h is 
significantly different (modulus re) to tp~ then its 
application will, in principle, specify one of the 
enantiomorphs. In practice, enantiomorph specifica- 
tion is also dependent on vector h forming strong 
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seminvar iant  relationships with the vectors h 1, . . . ,  hp, 
and its ability to p ropaga te  h on H will, of course, be 
impor tant  to this latter requirement and is described in 
detail by Rodgers  (1980). The general problem of  
choosing the optimal enantiomorph-defining reflection 
in terms of  its connectivity will not be discussed here. 
This aspect of  direct-phasing methodology is a l ready 
adequately  covered in the literature. 

The purpose of  this paper  is to describe a procedure 
for applying the seminvar iant  phase ~0~ in the identifica- 
t ion  of  enantiomorph-defining reflections. The ap- 
p roach  is applicable to all noncent rosymmetr ic  space 
groups,  except for the 22 space groups which form 
enant iomorphical ly-related pairs. 

Three space groups P21212~, P2~ and P6~22 have 
been selected to illustrate the application of  this 
procedure.  Two different sets of  origin-defining re- 
flections have been selected in each case and a variety 
of  reflection classes are tested for enant iomorphic  
discrimination. This procedure  is embodied in the 
direct-methods software of  the X T A L  system 
(GENTAN;  Hall, 1982). 

3. Appl icat ions  o f  the procedure  

3.1. Space group P2~2121 (type 1P222) (see Table 1) 

For  this space group the seminvariant  vectors and 
moduli  (see Table 6.1c, International Tables for  X-ray 
Crystallography, 1974) are 

V = 1 and m = (2,2,2). 

0 

Example l (a )  

For  the origin-defining reflections ( O D R )  uuO, uOu 
and uOg where 

~Ouu o= n/2, ¢Puou= n/2 and ~uog=0,  

U =  0 ; IUI -- +1 ;  

0 (!01) 
U - 1 =  0 --1 and ~ = ( n / 2 ,  n /2 ,0) .  

1 - 1  

(i) Test uuO (class 1, Table 1): 

n ' =  (1 ,1 ,0)  U - ' =  (1 ,0 ,0)  

and 

~p' = (1,0,0) (P = n /2 (mod  70. 
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Since Cuuo is restricted to + 7d2, uuO will not specify the 
enant iomorph.  

(ii) Test Ouu (class 3, Table 1): 

n' = (0 ,1 ,1)  U -1 = (1, 1 , - 2 )  

and 
~ '  = (1, 1 , - 2 )  • = 0(mod n). 

Since ~00,,~ is restricted to +n /2 ,  Ouu will specify the 
enant iomorph.  

(iii) Test gOg (class 11, Table 1): 

n ' =  (0 ,0 ,0)  U - ' =  (0 ,0 ,0)  
and 

~0' = (0,0,0) • = 0(mod n). 

Since ~Ogog = 0 the reflection gOg will not specify the 
enant iomorph.  

(iv) Test uuu (class 13, Table 1): 

n' = (1 ,1 ,1)  U - ~ =  (1, 1 , - 1 )  

and 

¢p' = (1, 1 , - 1 )  @ = 0(mod n). 

Table 1. Examples o f  enantiomorph definition reflec- 
tions (EDR) in space group P2~2121 (type 1P222) fo r  

two choices o f  origin 

The flags * and + indicate that the enantiomorph would be 
specified if Ch is significantly different from (0,n) and +n/2, 
respectively. NR indicates that ~h is not restricted in value. 

Example (a) Example (b) 
ODR=1,2 ,7  ODR=4,5 ,6  

Class h u ~o h tp~ EDR ~o~ EDR 

1 uuO 110 +n/2 n/2 no n/2 no 
2 uOu 101 +n/2 n/2 no 0 yes 
3 Ouu 011 + n/2 0 yes n/2 no 
4 guO 010 0, n n/2 yes 0 no 
5 ug0 100 +n/2 0 yes n/2 no 
6 g0u 001 + n/2 n/2 no n/2 no 
7 uOg 100 0, n 0 no n/2 yes 
8 Ogu 001 0, n n/2 yes n/2 yes 
9 Oug 010 + n/2 n/2 no 0 yes 

10 gg0 000 0, n 0 no 0 no 
11 g0g 000 0, x 0 no 0 no 
12 Ogg 000 0, n 0 no 0 no 
13 uuu 111 NR 0 * 0 * 
14 uug 110 NR n/2 + n/2 + 
15 ugu 101 NR n/2 + 0 * 
16 guu 011 NR 0 * n/2 + 
17 ggg 000 NR 0 * 0 * 
18 ggu 001 NR n/2 + n/2 + 
19 gug 010 NR n/2 + 0 * 
20 ugg 1 O0 N R 0 * n/2 + 

(Z ° (! U -I = 0 -1 0 

1 - 1  0 
= (n/2, n/2, o) (0, n/2, n/2) 
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The unrestricted phase q)uuu may be used to specify the 
enantiomorph provided its value is significantly differ- 
ent from 0 and n. For example, in a multisolution 
process it could be applied with values between n/4 and 
3n/4. 

Example l(b) 

For the origin-defining reflections guO, ugO and g0u, 
with ~0g,0 = 0, ~o,g o = n/2, and ~Ogo, = n/2, 

U = 0 ; IUI = - 1 ;  

0 

0 and • = (0, n/2, n/2). 

0 

U - I =  

(i) Test uOu (class 2, Table 1): 

n' = ( 1 , 0 , 0 )  U -  x = ( 0 , 1 , 1 )  

and 

~o' = (0,1,1,) ~ = 0 (rood n). 

Since q~,,0,, is restricted to +_n/2, uOu will specify the 
enantiomorph. 

(ii) Test Ouu (class 3, Table 1): 

n' = (0,1,1) U-X = (1,0,1) 

and 

q¢ = (I,0,1) 0 = n/2(mod n). 

Table 2. Examples of  enantiomorph definition reflec- 
tions (EDR) in space group P6~22 (type 3P~2) for two 

choices of  origin 
T h e  flags * and  + indicate tha t  the e n a n t i o m o r p h  would  be specified 

if (o h is s ignificantly different f rom (0 ,n)  and + n/2, respect ively.  

E x a m p l e  (a) E x a m p l e  (b) 
O D R  = 1 O D R  = 8 

C las s  h u (o h ~0~ E D R  (0~ E D R  

1 Oku I O, n 0 no n /2  yes 
2 Okg 0 O, n 0 no 0 no 
3 hOu 1 O, n 0 no n/2  yes 
4 hOg 0 O, n 0 no 0 no 
5 hkO 0 O, n 0 no 0 no 
6 hh l  1 5n/6 ,  I I n / 6  0 yes n /2  yes 
7 hh2 0 2n/3, 5n/3  0 yes 0 yes 
8 hh3 I _+ n/2  0 yes n/2  no 
9 hh4 0 n/3, 4n /3  0 yes 0 yes 

I0  uuu 1 N R  0 • n /2  + 
11 uug 0 N R  0 * 0 * 
12 ugu 1 N R  0 * n /2  + 
13 ugg 0 N R 0 * 0 * 
14 ggu I N R  0 * n/2  + 

U - I =  1 

= 0  
1 

n/2 

Since ~0ou,, is restricted to + n/2, Ouu will not specify the 
enantiomorph. 

3.2. Space group P6122 (type 3P12) (see Table 2) 

For this space group the seminvariant vectors and 
moduli (see Table 6.1c, International Tables for  X-ray 
Crystallography, 1974) are 

V = ( 0 , 0 , 1 )  and m = ( 2 ) .  

Example 2(a) 

If the reflection class Oku (designated class 1 in 
Table 2) is selected to specify the origin with ~oo~ set to 
0, then 

U = I ;  I U I = I ;  U - l = l  

and 

q~=0 .  

(i) Test Oku (class 1, Table 2): 

n ' = l  × U - I = I  and ( 0 ' = 1  x 0 = 0 .  

Since ~Ook u is restricted to 0 or n, Oku will not specify the 
enantiomorph. 

(ii) Test Okg (class 2, Table 2): 

n ' = 0 ×  U - l = 0  and ~ 0 ' = 0 × 0 = 0 .  

Since ~Ookg is restricted to 0 or n, Okg will not specify the 
enantiomorph. 

(iii) Test hh3 (class 8, Table 2): 

n ' - - I  x U - l = l  and q ) ' = l  x 0 = 0 .  

Since ~Ohh a is restricted to +n/2,  hh3 will specify the 
enantiomorph. 

Example 2 (b) 

If the reflection class hh3 (designated class 8 in 
Table 2) is selected to specify the origin with a ~Ohh 3 
value of n/2, then 

U = I ;  I U I =  1; U - ~ =  1 

and 

• = n/2. 

(i) Test Oku (class 1, Table 2): 

n ' =  1 x U - I =  1 and (o '= 1 x n/2 = n/2. 

Since ~00~,u is restricted to 0 or n, Oku will specify the 
enantiomorph. 

(iii) Test uug (class 1 1, Table 2): 

n ' = 0 x  U - l = 0  and ( o ' = 0 x  n / 2 = 0 .  

Since ~0uug is unrestricted, it may be used to specify the 
enantiomorph provided it has a value significantly 
different from 0 and n. 
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3.3. Space group P2~ (1P202) (see Table 3) 

For this space group the seminvariant vectors and 
moduli are 

V =  1 and m =  (2,0,2). 

0 

Example 3 (a) 

Select the reflections uOu, gOu and 01g to define the 
origin (reflection classes 2, 6 and 9 in Table 3). The 
phases ~0,0 u and ~0g0, are restricted to 0 or n and are set 
at a value of 0. ~0o~g is unrestricted but may be set at any 
value 0 to 2n. This is because the position of the origin 
in the y direction is arbitrary (i.e. P2 a is a polar space 
group). It is important to emphasize that setting tp0~ to 
a non-zero (or non-n) value will not provide enantio- 
morphic discrimination. An additional phase t~ with a 
value significantly different from ~0' must be specified 
for this purpose. This also applies to space group P1, 
where three unrestricted phases are used to specify the 
origin. 

Table 3. Examples of enantiomorph definition reflec- 
tions (EDR) in space group P 2 1 ,  b unique (type 

1PO20),for two choices of  origin 

The flags * and + indicate that  the enant iomorph  would be specified 
if (oh is significantly different from (0,n) and (q, n + q), respectively. 
In example  (b) the value of  q is assumed to be non-zero,  non-n. 

Example  (a) Example  (b) 
O D R  = 2 , 6 , 9  O D R  = 3,6, 15 

Class  h u (Oh (O~, E D R  (0k E D R  

l uuO lu0 N R  0 * q + 
2 uOu 101 0, n 0 no q yes 
3 Ouu 0u I N R  0 * 0 * 
4 guO OuO N R  0 * 0 * 
5 ug0 lg0 N R  0 * q + 
6 g0u O01 0, n 0 no 0 no 
7 uOg 100 0, n 0 no q yes 
8 Ogu Og I N R 0 • 0 * 
9 Oug OuO N R 0 * 0 * 

10 gg0 0g0 N R  0 * 0 * 
11 g0g 000 0,  x 0 no  0 no 
12 Ogg OgO N R  0 * 0 * 
13 uuu l u l  N R  0 * q + 
14 uug lu0  N R  0 * q + 
15 ugu l g l  N R  0 * q + 
16 guu Ou 1 N R 0 * 0 * 
17 ggg OgO N R  0 * 0 * 
18 ggu 0gl  N R  0 * 0 * 
19 gug OuO N R 0 * 0 * 
20 ugg lg0 N R  0 • q + 

(i 1 i) (i 1 i) U -I  = 0 - 1  

1 1 

¢ = (0,0,0) (O,O,q) 

For this example 

U =  0 ; 

1 

U -I = 0 and 

1 

IUI = --1; 

(i) = ( o , o , o ) .  

(i) Test uuO (class 1, Table 3): 

n' = (1,u,0)  U - '  = ( 1 , - 1 ,  u) 

and 
tp' -- (1,--1, u) O--  0. 

Since ~Puu0 is unrestricted, it may be used to specify the 
enantiomorph provided that its value is significantly 
different from 0 and ~r. 

(ii) Test uOg (class 7, Table 3): 

n ' =  (1 ,0 ,0)  U - l -  - ( 1 , - 1 , 0 )  

and 

~o' = (1,--1, O) ~ = O. 

Since ~Ouog is restricted to 0 or n, it will not specify the 
enantiomorph. 

Example 3 (b) 

Select reflection classes 01u, g0u and ugu to specify 
the origin, with tP01u = 0, ~Pgou = 0 and ~oug u = q. Then 

U =  0 ; 

0 

U -1 = - 1 and 

0 

IUI = 1; 

,~ = ( o , o , q ) .  

This example serves to illustrate a problem that 
occasionally occurs in direct methods. Whenever 
possible restricted phases are used to fix a cell origin. 
This is desirable so that the origin of the cell will be 
placed at points in the lattice which require these 
phases to be restricted. When existing restricted phases 
cannot be used for this purpose, either because of low 
IEI values or insufficient reliable structure-invariant 
relationships with other reflections, it is necessary to 
use unrestricted phases to specify the origin. This 
situation is not to be confused with the use of 
unrestricted phases to specify the origin along polar 
axes through the arbitrary assignment of one (as in 
P2~) to three (as in P1) unrestricted phases. 



26 A PROCEDURE FOR IDENTIFYING E N A N T I O M O R P H - D E F I N I N G  PHASES 

The use~ of the reflection ugu illustrates this differ- 
ence. The unrestricted phase ~00~ u may be set to some 
arbitrary value since it serves only to fix the origin on a 
polar y axis, but the phase ~0,g, (or for that matter any 
other unrestricted phase) must be assigned a value 
which conforms with the four permissible origins along 

~ and the origin on (x,z) [i.e. (0,0), (½,0), (0,½) and (:,~)1, 
the y axis fixed by 01 u. 

The problem is that the value of ~oug u is unknown at 
the start of a direct-methods process, and it is 
necessary to try a series of values between 0 and 2n. 
Typically, Ougu could be initiated at n/4, 3n/4, 5n/4, 
and 7n/4 in four separate calculations and be permitted 
to vary in the final cycles of phase refinement. An 
interesting aspect of this procedure is that if the actual 
value of tp,gu is significantly different from 0 and n, it 
will also serve to specify the enantiomorph, and the 
multi-solution process need only vary its value be- 
tween 0 and n. However, if the value of ~0,~, happens to 
be close to 0 or n then another reflection must be 
specified to fix the enantiomorph. For this reason it is 
strongly recommended that an additional phase is 
specified for independent enantiomorphic discrimi- 
nation. 

(i) Test uuu (class 13, Table 3): 

n' = ( 1 , u , 1 )  U - l  = ( u , u , 1 )  

and 
q¢ = (u,u, 1) (0,0,q) = q. 

Since ~Ouu u is unrestricted it may be used to specify the 
enantiomorph provided it is significantly different from 
q and q + n. 

(ii) Test Ouu (class 3, Table 3): 

n' = (0 ,u ,  1) U -  ~ = (u,g,O) 
and 

~o' = (u,g,O) (0,0,q) = 0. 

Since (00u u is unrestricted, it may be used to specify the 
enantiomorph provided it has a value significantly 
different from 0 and n. 
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A b s t r a c t  

Application of limit theorems valid for large values of 
the sum of independent random variables shows that 
for an equiatomic structure with n atoms in the 
asymmetric unit in the space group P1 the probability 
density distribution of the structure amplitude F for I FI  

large is 

p( x ) dx = [ n/2 n(1 - x 2)] 1/2 ( e / n)n/2 (1 - x )t"- ,/2 dx 

where x = F / 2 n f i s  the unitary structure amplitude and 

* Address from 1 January 1983: University Chemical Labora- 
tory, Lensfield Road, Cambridge CB2 1EW, England. 
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f is the atomic scattering factor. The expression will be 
somewhat different for other space groups. 

1. I n t r o d u c t i o n  

The probability distribution of structure amplitudes is a 
special case of the random-walk problem. Expressions 
valid for resultants small compared with the maximum 
possible are readily available, but the standard sources 
do not give expressions valid for large resultants 
(Wilson, 1980). The present paper uses a limit theorem 
other than the central-limit theorem to derive an 
approximate distribution for large structure amplitudes 
in the space group Pi .  
© 1983 International Union of Crystallography 


